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Microfluidics, 10/11-2009
•Surface tension

•Capillary forces

•Ideal gas law

•Viscosity

•Navier
 

Stokes equation

•Reynolds number

•Poiseuille
 

flow

•Electroosmotic
 

flow

•Electrophoresis

•Mixing

These topics are important for 
design of well-functioning fluidic 
microsystems.
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A lab-on-a-chip is a miniature laboratory
integrate (multiple) laboratory functions on 
a single chip of only millimeters to a few 
square centimeters in size and that are 
capable of handling extremely small fluid 
volumes down to less than pico

 
liters. 

Caliper/Agilent


 

Automatic analysis


 
Quick: small heat 
capacities


 

Less reagents and 
sample


 

Closed chip –
 

less 
pollution

Functions in:


 
Instrument

or


 
Chip
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Polymer components



 
Manufactured

 
by micro-injection

 
moulding
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Fluidic channels and reaction chambers can 
be made in silicon


 
DRIE etched in silicon


 

Sealed by glass from above


 
Holes for injection of 
reagents /extraction of 
products


 

Heating elements


 
Temperature sensors

Gold 
electrodes
di-electro 
phoresis

Drosophila embryos 
aligned on gold pattern

100 nl chambers
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Yole 2009: Emerging markets 
for microfluidic applications
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In-vitro diagnostics


 
Sample taken out of the body


 

Blood, salvia, urine, cell smear, biopsies


 

Future: from the central laboratories to homes and 
doctors’

 
offices


 

Must be automatic: Sample in –
 

answer out


 
Reliable results


 

Communication of results to doctor or hospital database


 

Disposable chip


 
Instrument


 
PC sized



 
Hand held

http://www.i-stat.com/website/www/misc/popup/system-specs.htm#stepbystep
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

 
Molecular diagnostics


 

Cancer


 

Infections (bacteria, virus, parasites)


 

Cardiovascular diseases


 
Molecular markers


 

DNA, RNA


 

Proteins; antigens, enzymes, hormones


 

Low molecular compounds



 
Sample preparation 


 

filters, micro-pillars, magnetic beads, separation


 
Washing



 
(Amplification e.g. PCR)



 
Reactions


 

Immunoreactions


 

Hybridization


 
Detection


 

Labels (dye, fluorescent, radioactive)


 

Label-free (impedance, electrochemical,  
amperometric, cantilevers, evanescent fields) 



 
Choose methods for all steps:

SENSITIVITY + SPECIFICITY

Cepheid
GeneXpert

 technology

Roche AmpliChip
Pharmacogenetic

 microarray

 

based 
test
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Gyros, Swedish life science company


 

Diagnosis


 
Drug discovery
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www.gyros.com

http://www.microbuilder.org/
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Cepheid GeneXpert
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Microfluidic construction kit
Integration of several polymer slides

The idea: modular concept as an intermediate step 
on the way to integrated systems

Lab on a ChipMicrofluidic
Unit Operations

Concept = Kit

Library of standard slides: pumps, mixers, splitters
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Microfluidics allow for controlled liquid handling:

Filtering and 
active porous membranes

Exact
metering

Mixing

Splitting

ThinXXS

 

design kit

 

slides: 
microBUILDER

Microfluidic functionalities are readily combined 
with a variety of sensor and actuator systems as 

well as a variety surface modifications (Bio-

 functional layers)

Silicon based

 

microchips

Lysis buffer

Mixer 1

Mixer 2

Ethanol

Incubation chamber
(21 µl)

Storage chamber
(31µl)

Washing buffer 1

Waste

Product

Connections to
silicon chip

Washing buffer 2
Elution buffer

Sample (blood)
Sample storage loop
(11µl)

Multifunctional
 

slide for 
DNA extraction

www.microbuilder.orgwww.microbuilder.org

Reagent integration
Excellent, liquid and Excellent, liquid and gassgass

 

barriersbarriers

Cuvette cavities
COC: excellent optical featuresCOC: excellent optical features

http://www.microbuilder.org/
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Surface modification


 
Hydrophilic / hydrophobic surfaces



 
Wetting/non-wetting droplets



 
Fuktende/ ikke-fuktende

 
væsker



 
Lithographic patterning



 
E.g. deposition of self-assembled
-monolayers
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Wetting / Non-wetting


 

Contact angle depends on the 
solid/liquid/gas that meet in one 
point


 

Wetting fluid: Contact angle < 90


 
Non-wetting: Contact angle > 90
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Surface tension


 

Surface between two fluids


 

Gas-Liquid


 

Liquid-Liquid


 

Energy per surface area


 

Surface tension along periphery


 
Pressure on section area

22 rPr  

rP /2Pressure difference outside/inside drop:
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Capillary rise    Senturia 13.2.3


 

A liquid that wets the walls will rise to a 
height h in a capillary tube


 

Equilibrium is when weight of liquid 
column equals surface forces that pull 
meniscus up 


 

Forces:


 

Surface forces pull meniscus up 
2rΓcosΘ



 

Gravity pull liquid down gh
 

r2

 cos22  rgh
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Definition of wetting angle


 

Can be modified by (chemical) 
surface treatment
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Ideal Gas Law


 

Equation of state for (ideal) gases


 
pV=NkT


 

k=1.38 10-23

 

J/K, Boltzmann
 constant


 

Senturia:
T

M
RP

W
m )(


 

R=8.31 J/(mol K), universal gas 
constant
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Exercise: 
Fluid volume in capillary “dead-end”


 
Where does the meniscus stop?


 

What is the volume that is pulled 
into the narrow capillary?


 

What happens when temperature 
is increased?
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Viscosity    Senturia 13.2.1



 

Deformation of fluids in the presence of 
shear forces



 

The property of a fluid that resists the action 
of a shear force



 

[ Pa s]



 

Newtonian fluid:

y
U

h
U

x











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Navier-Stokes equation


 

Conservation of mass


 

Newton’s 2nd law for a fluid

0)( 

 v

t


vpvv
t
v 


2))(( 

 
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Reynolds number


 

Laminar or turbulent flow?


 

Ratio of inertial forces to viscous 
forces


 

Reynolds number:
ratio of kinetic energy of a volume of 
fluid in the flow
to
the energy dissipated by the volume 
in the shear caused by interaction 
with its solid boundaries


UL

Re

•Microchannel:

•1 cm long

•1 mm wide

•100 m deep

•L=50 m 

•=1000 kg/m2

•=0.001 kg/ms

Laminar for flow speeds less than 
10m/s
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Poiseuille flow


 

Pressure driven flow in channel


 
Pressure drop along channel


 

Steady flow


 
Incompressible flow


 

Flow in x-direction, only


 
No-slip boundary equations
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Poiseuille flow

  

L
pa

Q

L
palQ

dyyUdzQ

ya
L
pyU

cycy
L
pyU

L
p

y
U

z

l a

a
x

x

x

x

z


























 













8

:pipeCircular 

12

)(

:rate Flow

2/
2
1)(

:givescondition boundary  slip No

21
2
1)(

: twiceIntegrate

0

4

3

0

2/

2/

22

2

2

2



ICT 25

6 mm

New Micro Flow Rate Sensor 
for Standardized Industrial Production

Liv Furuberg
Dag Wang
Andreas Vogl

Microsystems and Nanotechnology
SINTEF Information and Communication Technology

3 m
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The new design suggests a low-noise, 
mechanically robust flow sensor 

Pyrex

Pyrex

Silicon

Pressure drop
proportional to the flow rate

Channel depth 11 m

Sensitive and strong
membrane

Protected 
piezoresistors for
stress measurements

Temperature 
sensing diode



ICT 27

Flow rate sensor


 
Measure

 
fluid flow

 
through

 
chip


 

Glass-silicon-glass
 

chip


 
Laminar

 
flow, low

 
Re numbers


 

Differetial
 

pressure
 

sensor 
(membrane

 
+ piezoresistors)


 

Narrow
 

channel
 

with
 

pressure
 drop, Pouseille

 
flow


 

Pressure
 

drop
 

~ 100 -200 Pa


 
Integrated

 
thermometer


 

Channel: 800x1500x10 m


 
Flow

 
rate 2 l/min

3

12
hw

Qlp






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Electroosmotic Flow


 
Flow driven by electric field


 

Voltage applied between 
electrodes immersed in 
electrolyte


 

Force on fluid near the 
boundaries, excess of charged 
particles


 

Debye
 

screening layer, typically 
10nm


 

Disadvantages:
Sensitivity to impurities
Ohmic

 
generation of heat

Need for high voltages

Solving Navier
 

Stokes


 DxwU 0
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Poiseuille
 

flow vs. electroosmotic
 flow

Advantage in 3D 
visualization/detection

Three pictures after creation of 
fluorecent

 
molecule:

0s
66ms
165ms

Separation based on charge-to-size 
ratio of molecules.

Separated bands of species
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Electrophoresis


 

Species carried along with 
electroosmotic

 
flow


 

Drift relative to the moving velocity:

xepepv 


 

Electrophoretic
 

mobility


 

Apply voltages to channels


 
Create controlled plug of species


 

Separate molecules by charge 
and volume by electrophoresis
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Mixing


 

Laminar flow


 
Mixing by diffusion only


 

Diffusion equation
),(),( 2 trCD

t
trC







 

Average displacement of 
diffusing particle:  

Dtl 4


 

Diffusion constant for water 

sD /m103.2 29


 

Water: Diffusion length after 1 s: 
90m


 

On the other hand:


 
Characteristic lines become 
blurred…


 

What about larger molecules? 
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Mixing 
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ICT 34
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Nucleotides


 

Sugar linkage


 
Phosphate linking group


 

Amino acid group BASE


 

Nucleic acids: adenine A
guanine G
cytosine C
thymine T



ICT 36

The four nitrogenous bases of DNA are 
arranged along the sugar- phosphate 
backbone in a particular order 
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Polymerase Chain Reaction (PCR)


 

Denaturing, separate strands, 95 
C


 

Annealing, 
cool in presence of primer 65 C


 

Extension, in presence of 
nucleotides and enzymes
(One enzyme is polymerase)
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PCR - cycles


 

Copies start at a particular point 
of DNA chain, extend other way 
without limit


 

Singly terminated chains


 

Repeat denature-anneal cycle
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Amplification after 20 cycles


 

Start with N0 DNA molecules


 

N cycles


 

n * N0 singly terminated strands


 

Number of doubly terminated 
strands more than doubles each 
cycle
ND

 

(n) = 2 ND

 

(n-1) + n N0


 

20 cycles: 219

 

= 542000 doubly-
 terminated strands
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PCR reactor, batch system


 

Thermal time constant of chamber


 

Chamber 25 l


 
length: 10 mm height: 0.5 mm


 

Heating 35C/s


 

Throughput 58 nl/s


 

(Northrup
 

et al)
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PCR Batch system, with thermal 
isolation


 
Thermal time constant of chamber


 

Chamber 2 l


 

Heating 60-90C/s


 

Heating and cooling pr-
 

cycle: 1.5s


 

(Daniel et al.)
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PCR flow system


 

Continuos flow through channels


 
Shaded areas at defined 
temperatures


 

No ramping necessary


 
Relative time spent in each zone is 
fixed


 

Max flow rate through system: 72 nl/s


 
Channel dimension: 40 m x 90 m 
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Temperature control in PCR chamber
a) Measure temperature in 

silicon wall
Feedback: Wall temperature 
tracks set-point 
temperature very closely. 
Fluid temperature lags with 
exponential responses.

b) Measure temperature in 
fluid cavity 
Feedback: Wall temperature 
overshoots, not acceptable!
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