Microfluidics, 10/11-2009

*Surface tension

Capillary forces

These topics are important for
|deal gas law design of well-functioning fluidic
microsystems.

*\Viscosity

*Navier Stokes equation
*Reynolds number
Poiseuille flow
Electroosmotic flow
*Electrophoresis

*Mixing
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A lab-on-a-chip is a miniature laboratory

integrate (multiple) laboratory functions on
a single chip of only millimeters to a few
square centimeters in size and that are
capable of handling extremely small fluid
volumes down to less than pico liters.

Caliper/Agilent

® Automatic analysis

B Quick: small heat
capacities

® Less reagents and
sample

® Closed chip — less
pollution

Functions in:
B [nstrument
or

B Chip
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Polymer components

m  Manufactured by micro-injection moulding
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Fluidic channels and reaction chambers can
be made in silicon

B DRIE etched in silicon -
B Sealed by glass from above 100 nl chambers

B Holes for injection of
reagents /extraction of
products

Drosophila embryos
aligned on gold pattern

B Heating elements
B Temperature sensors
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Yole 2009: Emerging markets
for microfluidic applications

Microfluidics applications

Industrial and
Analytical Clinical Pharmaceutic
Devices Diagnostics al Research Point of Care EmT:tT:m Drug Delivery
Micro ANy Microdispensers,
- - Flex-arrayers, inkjet
Dispensing e .
{ cropumps,
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-Homeland Security...
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In-vitro diagnhostics

B Sample taken out of the body ,,m"s,, ? |
B Blood, salvia, urine, cell smear, biopsies ) sy — I

B Future: from the central laboratories to homes and
doctors’ offices

B Must be automatic: Sample in — answer out
B Reliable results
B Communication of results to doctor or hospital database

® Disposable chip
W |nstrument

m PC sized

m Hand held
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http://www.i-stat.com/website/www/misc/popup/system-specs.htm#stepbystep

B Molecular diagnostics
m Cancer
m Infections (bacteria, virus, parasites)

m Cardiovascular diseases Cepheid
B Molecular markers GeneXpert
m DNA, RNA technology

m Proteins; antigens, enzymes, hormones
m Low molecular compounds

B Sample preparation
m filters, micro-pillars, magnetic beads, separation
B Washing
B (Amplification e.g. PCR)
B Reactions
B |mmunoreactions
m Hybridization

B Detection Roche AmpliChip

m Labels (dye, fluorescent, radioactive) Pharmacogenetic
m Label-free (impedance, electrochemical, microarray based
amperometric, cantilevers, evanescent fields) test

B Choose methods for all steps:
SENSITIVITY + SPECIFICITY
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Gyros, Swedish life science company

® Diagnosis
® Drug discovery

EE——— e
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WWW.gYros.com
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http://www.microbuilder.org/

Cepheld cenexpert Processing ..

chambers- *."
contain reagents, "
filters, and cap-
ture technologies
necessary to
extract, purify,

and amplify target
DA

Optical windows-
enable real time
four-colar detection

Reaction tube-
thin chamber
enables very
rapid thermal
cycling

@ SINTEF
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enables fluid
transfer from
chamber to
chamber; may
caontain DiA
hy=1s and
filteration
components
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Microfluidic construction kit
Integration of several polymer slides

The idea: modular concept as an intermediate step
on the way to integrated systems

T
o® —~ 5 —
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Microfluidic Concept = Kit

Unit Operations

==

Lab on a Chip



Microfluidics allow for controlled liquid handling:

Reagent integration

Excellent, liquid and gass barriers

ThinXXS design kit slides:
microBUILDER

BN BN w0 |

Splitting

COOCE LV 08 wowoe

1
(21 uh

Microfluidic functionalities are readily combined

Lysis buffer
g Sample (blood)
]Z = Sample storage loop
- /(11D

with a variety of sensor and actuator systems as

well as a variety surface modifications (Bio-
functional layers)

Multifunctional slide for
DNA extraction

¥

WAL T aE .u‘

Exact
metering

r et re Ar ou 52 £x 58 £5 83 F4 &2 03
SRR L QR L [T L RV A e Lot A4 [ £]

Filtering and

Cuvette cavities
COC: excellent optical features

HMBUILDER

. . active porous membranes
www.microbuilder.org

@ SINTEF
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Surface modification

Hydrophilic / hydrophobic surfaces
Wetting/non-wetting droplets
Fuktende/ ikke-fuktende vaesker

Lithographic patterning
E.g. deposition of self-assembled
-monolay ST

SINTEF
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Wetting / Non-wetting

B Contact angle depends on the
solid/liquid/gas that meet in one
point

B Wetting fluid: Contact angle < 90
B Non-wetting: Contact angle > 90

i,

Water Water with o 228
\ wetting agent ligead g

m A
§OFLT
O ()
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Surface tension -

B Surface between two fluids

m Gas-Liquid
m Liquid-Liquid
B Energy per surface area igeEs e e
W Surface tension along periphery
B Pressure on section area J 1h1 ;;
Sy
ENU
) -
2l = AP ar @

Pressure difference outside/inside drop: AP — ZF/ 8
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Capillary rise  senturia13.2.3

Capillary Rise
B A liquid that wets the walls will rise to a
height h in a capillary tube

® Equilibrium is when weight of liquid ._
column equals surface forces that pull |

meniscus up
W Forces:
m Surface forces pull meniscus up
2nrrC.;OSG) o Water Mercury
m Gravity pull liquid down pgh mr2 (positive) (negative)

pghar? = 2721 cos©

SINTEF
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Definition of wetting angle

B Can be modified by (chemical)
surface treatment

SINTEF
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ldeal Gas Law

B Equation of state for (ideal) gases -
B pV=NKT NIEE
B k=1.38 102 J/K, Boltzmann o]
constant o ﬂﬁ;_}?:’ ﬂé
T
B Senturia: = é

R
P=p (—T
'Om(lvl )

W State variables

“W wolume
F absolute pressure
T absolute temperature

B R=8.31 J/(mol K), universal gas
constant

SINTEF



Exercise:
Fluid volume in capillary “dead-end”

B Where does the meniscus stop?

® What is the volume that is pulled
into the narrow capillary?

B What happens when temperature
IS increased?

SINTEF
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ViSCOSity Senturia 13.2.1

® Deformation of fluids in the presence of
shear forces

B The property of a fluid that resists the action
of a shear force

B n[Pas]

B Newtonian fluid:

T = E
T
U

T=1

SINTEF
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n/
)

Figure 13.1. Fluid between two plates. The upper plate moves to the right with velocity U,

setting up shear forces 7.

—
1 Maoving plate [ .
2 Sheared liquid | / o
3 Fixed plate i /
NN YNE
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Navier-Stokes equation

B Conservation of mass

op _
L v (pV)=0
p (V)

B Newton’s 2nd law for a fluid

p(% +(V-VWV)=Vp+nV¥V

SINTEF
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Reynolds number

B Laminar or turbulent flow?

B Ratio of inertial forces to viscous
forces

® Reynolds number:

ratio of kinetic energy of a volume of
fluid in the flow

to

the energy dissipated by the volume
In the shear caused by interaction
with its solid boundaries

Re:—pUL

*Microchannel:
*1 cm long
1 mm wide

*100 um deep

*L.=50 um
*p=1000 kg/m?
'n=0.001 kg/ms

Laminar for flow speeds less than
10m/s

SINTEF
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Poiseullle flow

Pressure driven flow in channel
Pressure drop along channel
Steady flow

Incompressible flow

Flow in x-direction, only

No-slip boundary equations

Pressure variation, Re=188

Plates are 1 cm apart, initial u=15 cm/s

POISEUILLE FLOW, 2D

FHOTON

a.2a
a.21

[t I o N I NI o
L= == B B = S I TE R o

Lo
[SUN )

-
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o°U L Ap

=0 . .
7y L Poiseuillle flow

Integrate twice :

U (y) :_%A_Lp y* +cly+c2

n

Noslip boundary condition gives: pm?mn

1 A
Ux(y) — 277 a/2 y ] Vector

a.82

8.84
A.85

Flow rate: 12
I, al2 Haes
= a.11

j dz [U, (y)dy oo
e
H o

12 p Iz
12n L

I
.8.21 in: : L, x

POISEUILLE FLOW, 2D

Circular pipe:
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New Micro Flow Rate Sensor
for Standardized Industrial Production

3um

Liv Furuberg
Dag Wang
Andreas Vogl

Microsystems and Nanotechnology
SINTEF Information and Communication Technology

@ SINTEF
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The new design suggests a low-noise,
mechanically robust flow sensor

Sensitive and strong

membrane
0
Pvrex
y Protected
piezoresistors for
Silicon stress measurements
Pyrex

Temperature
sensing diode

Pressure drop

Channel depth 11 um _
proportional to the flow rate

SINTEF
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Flow rate sensor

Measure fluid flow through chip
Glass-silicon-glass chip
Laminar flow, low Re numbers

Differetial pressure sensor
(membrane + piezoresistors)

Narrow channel with pressure
drop, Pouseille flow

® Pressure drop ~ 100 -200 Pa
B Integrated thermometer

B Channel: 800x1500x10 um
B Flow rate 2 pl/min

12-7-1-Q
AD =
P w-h?

@ SINTEF 27




Electroosmotic Flow

® Flow driven by electric field

® Voltage applied between . \!

electrodes immersed in
electrolyte

B Force on fluid near the
boundaries, excess of charged
particles

B Debye screening layer, typically
10nm

® Disadvantages:
Sensitivity to impurities
Ohmic generation of heat
Need for high voltages

Electric Field

Insulating solid

Net charge in
diffuse layer

Insulating solid

Figure 13.11.  Illustrating electroosmotic flow

~3Lp U
U .

Figure 13.12.  Electroosmotic flow profile.

Solving Navier Stokes

SINTEF
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Poiseuille flow vs. electroosmotic
flow

Advantage in 3D
visualization/detection

Three pictures after creation of
fluorecent molecule:

Os
o6ms
165ms

Separation based on charge-to-size
ratio of molecules.

Separated bands of species

SINTEF
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Electrophoresis

B Species carried along with
electroosmotic flow

® Drift relative to the moving velocity:

V. = E Injection
€p lLlep X V3> vy Va>vy
Vi<vy
. e i Injected sample plu
B Electrophoretic mobility Za
—— 4=0
- Vi<vy
- WVa<vy U Slower compoleent
0 0
® Apply voltages to channels V3”—§ ":‘Z“—" V=0
B Create controlled plug of species Va<w
Figure 13.14. Illustrating electrophoretic separation with electroosmotic flow. The voltages

. S e pa ra te m O I eCU I eS by Ch a rg e usgd during the injection agnd scparztion sequel;ce are described in the text. ! he volae

and volume by electrophoresis

SINTEF



Mixing

B Laminar flow
B Mixing by diffusion only

® Diffusion equation

8C§,t) = DV2C(r,1)

B Average displacement of
diffusing particle:

| = /4Dt

B Diffusion constant for water

D=2.310"m*/s

Figure 13.16. Illustrating laminar flow when two streams are combined. Mixing occurs only
by diffusion.

® Water: Diffusion length after 1 s:
90um

B On the other hand:

B Characteristic lines become
blurred...

® What about larger molecules?

SINTEF
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100 mm long,“ '
“600 pm deep

s A

at

Mixing Complete after =1/3 of Channel
4,000 pl/min, Partial Mixing at 50 pul/min

~ 100 mm
¢ -

—

Hlustration of miniature fluidic channels used to compare mixing in macroscopic

and microscale fluidics. After Branebjerg, et al. (1994).
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DNA the molecule of life

PRI {‘{,'JR';. ﬂ‘rJ »
TSN

Trillions of cells O
QU
Each cell: ...

chromosomes
® 46 human

chromosomes

® 2 meters of
DNA

3 billionDNA \ 1 !
subunits (the |
bases: A, T, C, G) DA

* Approximately
30,000 genes
code for proteins
that perform most
life functions

Y-GG 01-0085

SINTEF
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DNA Genetic Code Dictates Amino Acid

Identity and Order
DNA
<N Sequence

| -
= << o
tD< &)
Vo
W ‘

the
Genetic

GCA AGA GAT AAT TGT... Code.

lAIa Arg - Asn  Cys « « « GrOwing
1

2 3 4 5 Protein

Y-GA 98-648

@DII‘IEI_ L e i e e



Nucleotides

B Sugar linkage
B Phosphate linking group
B Amino acid group BASE

® Nucleic acids: adenine A
guanine G
cytosine C
thymine T

chromasome
5 .
# e p 3\3
3 Bt ﬁl Sugar

.fl" "yl ny A 1
X : |
1:* B (A,GB,aé%r T)
._.]-* J

DA
Figure22.1. A cartoon representation of a nucleotide, consisting of a sugarlinkage, a phosphate
SINTEF

end-group (P) which serves to li i i e
A ink to the next nucleotide, and an amino-acid group, the ba;é,



The four nitrogenous bases of DNA are
arranged along the sugar- phosphate
backbone in a particular order - rroe e

- Deowynbosa
ff + Bugar Molecule

; y )
I l.' Mitrogenous

Y |
A" — Vaak Bends /
\.,L E slwsen ;"
."x Easas

Y Iy
Sugar-Phosghale
Backbone  ORNLDWG SS-SE40
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DN & |:-r'1mer'5 DM A

- polyrmerase
- - T=q

DM& termplate strand
denaturi ng
(95°C)
step 2:
anneallng
twao DMNA strands
(55 C)

-

repeat cycle
(20-40 times)
i—

four DA strands

SINTEF

Y

nuclentides
(dTTPR, dCTR, dATP, dGTF)

b Y

m

section of D&
= to be arnplified

5.‘

3.‘

(2 .:.E-l'—] burLzisayyuhs - ¢ daqi
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Polymerase Chain Reaction (PCR)

B Denaturing, separate strands, 95
°C
® Annealing,
cool in presence of primer 65 °C
B Extension, in presence of
nucleotides and enzymes
(One enzyme is polymerase)

SINTEF

5 3
P T rrrTl
AGGTTAGCCACCT
5 3
LT T LT T T T
AGGTTAGCCACCT
TCCAATCGGTGGA
N O O O

¥ . 5

Figure 22.2.  Single- and doﬁbie-slranded DNA fragments.

!lillllllflf{ - - Original
AGGTTAGCCACCT
TGGA

5 3 3,—I—'L—L-J~—5,Pr:mer
Pn'mer*r—r—l-—rm

AGGT

TCCAATCGGTGGA

SR I I

; Ll ] - Original

Figure 22.3.  Annealing: the primer can attach to sin

: gle-stranded DNA wherever the target
sequence 1s complementary to the primer sequence.
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PCR - cycles

® Copies start at a particular point
of DNA chain, extend other way
without limit

B Singly terminated chains

B Repeat denature-anneal cycle

. ®SINTEF

T T T L L LT L T Orenal
AGGTTAGCCACCT
TCCAATCGGTGGA
S T T T O A I Singly
3 5 terminated
) ¥ Singly
FTTTTT LTI T T terminated
AGGTTAGCCACCT
TCCAATCGGTGGA

.___3‘llllilllllllls.____ Original

Figure 22.4.  After the first extension reaction, the original DNA strands are copied as singly-
terminated strands, each one starting from the point of attachment and extending from the 3°

end.

5' 3
CTTT T I I T LT LT Original
AGGTTAGCCACCT
TGGA
5 3 I T
TT T T 3 5
AGGT
TCCAATCGGTGGA _—
Lt et r et tSﬂ}gyd
- "3. 5 erminate
) 3 Singly
T LT T T T T T T terminated
AGGTTAGCCACCT
TGGA
' 3 N I
T 3 5
AGGT
TCCAATCGGTGGA
[RPRUR N O O O U T L L .... Orginal
3 5'
Figure 22.5.  After the second anneal, primer can attach to all four strands.
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Amplification after 20 cycles

m Start with N, DNA molecules

--—-5' 3..-

TTTTTTTTT T 111 -~ Original
AGGTTAGCCACCT
TCCAATCGGTGGA
ottty Singl
B N cycles 7 5 o
3 ¥ Doubly
FTTTTTViTTTTT0 terminated
AGGTTAGCCACCT
* . R TCCAATCGGTGGA
Singl
B n * N,singly terminated strands e LU e
5 3'____ Singly
T TTTTTTTTTTT terminated
AGGTTAGCCACCT
. TCCAATCGGTGGA
® Number ofdoubly terminated RENENERER N Dosbly
3 5
strands more than doubles each 5 5 gy
LTI LLLTLL L eminatd
CyCIe TCCAATCGGTGGA
___3,||a|||1[111115'W,o,igm,

Figure 22.6. After the second extension cycle, there are original, singly-terminated, and
doubly-terminated strands. '

B 20 cycles: 29 = 542000 doubly-
terminated strands

SINTEF 40



PCR reactor, batch system

B Thermal time constant of chamber

B Chamber 25 yul
B |ength: 10 mm height: 0.5 mm

B Heating 35°C/s

B Throughput 58 nl/s

® (Northrup et al)

Polyethyle:
tubing

0.5 mmI

Aluminum

bond

Figure 22.8.

Cover [ 10 mm Silicone
ne_ glass \,( >11 / rubber

—~Low-stress
o silicon nitride
Polysilicon heater

pad~"

The miniaturized PCR chamber reported by Northrup [134].

SINTEF
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PCR Batch system, with thermal
Isolation

B Thermal time constant of chamber

Silicon nitride web (1 pm) Reaction chamber

B Chamber 2 pul

T

Platinum resistors on 3 pm silicon nitride membrane

B Heating 60-90°C/s

Figure 22.10. Cross-section of the Daniel design of a bulk-micromachined PCR reactor [135].

B Heating and cooling pr- cycle: 1.5s ' T

® (Daniel et al.) N D |

3 pm silicon nitride |
membrane (back)

1 um silicon nitride
mesh (front support)

SINTEF

42



PCR flow system

B Continuos flow through channels

B Shaded areas at defined
temperatures

Buffer in Sample in Product out
AN L.

\

Copper
heat sinks

/

® No ramping necessary

® Relative time spent in each zone is
fixed

Two-layer glass with etched flow channels

Figure 22.12. A continuous-flow PCR system [136]. A two-layer glass sample with flow
channels etched into it is clamped to a support containing three copper heat sinks, each one

. M aX ﬂ OW rate th ro ug h Syste m : 72 n I/ S controlled to a fixed temperature. As fluid flows through the channel, it encounters a typical

PCR temperature cycle.

® Channel dimension: 40 um x 90 um

SINTEF 4



Temperature control in PCR chamber

a) Measure temperature in
silicon wall

T T T T T T
r |_— Wall temperature
Fluid temperature -

[=]
o

Feedback: Wall temperature | wartemperare
tracks set-point )
temperature very closely.
Fluid temperature lags with

@®
[=]
i

=]

[=]
>
=]

Temperature (C)
Temperature (C)

40

E
(=3

exponential responses.

¢} 5 t0 15 20 25 30 35 4¢ 0 5 10 15 20 25 30 35 40

Time (sec) Time (sec)

b) Measure temperature in
fluid cavity

Feedback: Wall temperature
overshoots, not acceptable!

SINTEF
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